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ABSTRACT

/This paper reports the results of a statistical analysis of the

performance of three branch and bound algorithms for the general (asym-

metric) traveling salesman problem on randomly generated test problems

with up to 325 cities. Three types of functions, polynomial, super-

polynomial (log-exponential) and exponential, were fitted to the perform-

ance data of each of the algorithms by least squares techniques. The

three functions describe almost equally well the behavior of the algo-

rithms in the range of problem sizes examined.

4.--

Key words: Traveling salesman problem, branch and bound, algorithm per-

formance, statistical analysis
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Carnegie-Mellon University
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and

Paolo Toth
University of Bologna

1. Introduction

Given n cities and a nonnegative cost cii of traveling from city i to

city j, the traveling salesman problem (TSP) asks for a minimum cost tour of

the n cities. In graph-theoretical terms, the n cities are the nodes of a

complete directed graph G = (N,A) and an optimal tour is a minimum cost di-

rected Hamilton cycle. The TSP is called symetric if c - cji for all ij,

asymmetric otherwise. By associating a variable xij with every arc, defined

to be 1 if (i,j) is an arc of the tour (Hamilton cycle) to be constructed and

0 otherwise, one can write the TSP (see [5 1) as

n n
(1.1) in Z E c x

i=l J=l j

subject to

a

"¢E x ij 1, ,. n
(1.2

i: x = 1 ,j 1n,...,n
i-l

(1.3) x j 0 or 1 ,i~j - 9..

•. (1.4) E E x <ISI-1 If Sc[1,...,n), 2 < ISI < n-1.

ics j -
r:; %.

AS.
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Without (1.4), the above problem is the n X n assignment problem (AP),

equivalent to the linear program (1.1), (1.2) and

(1.3') 0, ij =

A solution to AP is either a tour or a collection of subtours (direc-

ted cycles of length less than n), and the role of the inequalities (1.4)

(called subtour elimination constraints) is precisely to exclude the occurrence

of subtours in a solution. On the other hand, the presence of (1.4) also re-

quires that of (1.3), since the polyhedron defined by (1.2), (1.3') and (1.4)

, has fractional vertices. Thus the TSP is an integer program.

*Although it has a very special structure, the TSP still has the reputa-

tion of a notoriously difficult combinatorial problem. It is known to be

NP-complete, and hence in all likelihood there exists no polynomial time al-

goritbhm for solving it - in the worst case sense, i.e., in the sense of being

guaranteed to solve every instance of the TSP. This, however, leaves open

the question concerning the expected or average time required to solve a ran-

domly chosen TSP. Whether the expected running time of various TSP algorithms

is an exponential or a polynomial function of n, or perhaps something in'be-

tween like a superpolynomial or log-exponential function, is at present an

open question. A probabilistic analysis of the problem, although very tempting,

seems difficult. We say it is tempting, since the AP, one of the most comnon

3 2relaxations of the TSP, is solvable in O(n ) time in general, and in O(n2 )

time when processed repeatedly in the context of a branch and bound procedure

for the TSP. At the same time, the AP has n! solutions (assignments), of

which (n-l)I are TSP solutions (tours). Furthermore, in the context of the

TSP only those assignments are of interest that contain no diagonal elements



3

(of the assignment tableau, i.e., satisfy xii = 0, i = l,...,n), and while

the assignment problem with this extra constraint is as easy to solve as the

original one, the number of its solutions is n!/e rounded to the nearest integer,

where e is the base of the natural logarithm (see, for instance, [6 ], p. 10).

Thus on the average one in every n/e "diagonal-free" assignments is a tour.

This, together with the fact that a breadth-first branch and bound procedure

can rank the k best diagonal-free assignments by solving at most kn assignment

problems, hence by a computational effort of O(kn 3), suggests that a procedure

of this type might be able to find an optimal tour in a TSP with randomly gen-

erated costs by an average computational effort of O(n ). For this to be true,

however, the probability distribution of the costs would have to be such that,

roughly speaking, if all assignments are listed in order of increasing costs,

tours are evenly distributed throughout the list (rather than "clustered" in

-- certain parts of it). At this point it is not clear whether this is the case

for any distribution of the costs. Several attempts at a probabilistic anal-

" ysis essentially based on the above considerations have either argued that

this is very likely to be the case (see [ 31, and also the letter [7 1 pointing

out the inadequacy of the argument), or have simply assumed it to be true [91.

Needless to say, this does not settle the problem.

While the theoretical issue remains unresolved, it seems of considerable

interest to examine from this point of view the empirical performance of some

of the more efficient TSP algorithms on problems with randomly generated costs.

With this in -ind, we have undertaken a statistical analysis of the performance

of three well known AP-based TSP algorithms, as reported in the literature by

- .their authors. To be more specific, we fitted various types of approximating

functions to the published performance data for each algorithm, in an attempt
.4
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- to decide which type of function describes best the relationship between

problem size as defined by n, and solution time. Our aim in reporting these

results is not to compare the algorithms, but to compare the performance of

the different approximating functions that we tested.

2. The Algorithms

The three algorithms that we examined are those of Smith, Srinivasan

and Thompson [101, Carpaneto and Toth [4 ], and Balas and Christofides [ I],

to be denoted in the following by SST, CT and BC, respectively. All three

are enumerative procedures using the AP (with forbidden diagonal elements) as

a relaxation of the TSP. However, the SST and CT algorithms use the AP with

* the original objective function (1.1), whereas the BC procedure uses a La-

grangean constructed by taking into the objective function, with appropriate

multipliers, selected inequalities of the type (1.4), or inequalities derived

from (1.2) and (1.4). Whatever the objective function of a problem P, we de-

note its optimal value by v(P).

All three procedures are initialized by putting the TSP on the list of

active subproblems, and each of them stops when the list of active subproblems

, is exhausted. The subproblems on the list differ from the original TSP (and

from each other) by specified subsets of arcs that are forcibly included (I)

. into, or excluded (E) from the solution.

In each of the three algorithms, at a typical iteration some or all

% of the following steps may be executed:
.0

Subproblem Selection. Choose a subproblem TSPi from the list according

to some rule.

The SST algorithm uses the rule known as depth first or LIFO (last in

first out). This consists of always choosing one of the subproblems (nodes

' .
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of the search tree) generated at the last branching step, in the order of

nondecreasing lower bound (as given by the AP solution value plus penalties

associated with each node); and when no more such subproblems exist, back-

9," tracking to the parent node and applying the same rule to its brothers. This

rule has the advantage of modest storage requirements and easy bookkeeping.

Its disadvantage is that possible erroneous decisions (concerning arc inclu-..

sion or exclusion) made early in the procedure cannot be reversed until late

. in the procedure.

The subproblem selection rule used by the CT algorithm is known as

breadth first. It consists of always choosing the subproblem with the best

(smallest) lower bound. This rule has the desirable feature of keeping the

.- % search tree as small as possible, but on the other hand it requires consider-

able storage space.

The BC algorithm uses a combination of the depth first and breadth

first rules: a successor of the current subproblem is selected whenever

available; otherwise a node with best (smallest) evaluation E is chosen from

the list, where E is based on the value of the lower bound, corrected for the
.,

"distance" of the subproblem solution from a tour.

Having chosen a subproblem from the list, the SST and BC algorithms

go to Lower Bounding, whereas the CT procedure goes to Branching.
.",

Branching. Break up the feasible set of TSPi by augmenting the sets

I and Ei of included and excluded arcs, respectively.

The SST algorithm chooses a minimum cardinality subtour in the current
"' ' ,fiitI)] and creates

.' solution to APi, whose free arc set is, say, ((il,h),... ,

t successors of node i, say il,...,it, by defining

9
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E U I = 1i

(2.1) --

Eit = iUi(i U,j )p, I = I(it-lJt.1

The CT algorithm uses the same rule (2.1), but chooses for branching

a subtour whose set of free arcs is of minimum cardinality.

The BC algorithm uses intermittently two branching rules, one of which

2is (2.1), while the other one is derived from the principle of conditional

.bounds, which can be stated as follows. Let H be the arc set of the current

best tour, let C ij > O, ij = 1,...,n, be a set of reduced costs associated

N with the linear program (1.1), (1.2), (1.3'), (1.4), and let SCH, S =

((iljl),...,(i ,jp ) be such that
p p

ij >
(ij)S

where U is the current upper bound, and L(A) is the lower bound associated

with the cost vector c.

Further, let %, r = l,...,p be arc sets of G satisfying

A If (ij)eA.
rI(i'j)CQr r r-

Then every tour of value less than U satisfies the disjunction

x = 0, (i,J)'Q 1 V...V xj= 0, (i,J)Qp.

This disjunction can be used to create p successors of node i, by

defining

E ". £ E1 UQ 1  I U Ii

. (2.2)

Eip E UQ p I, p

4.P

.r9 e ,,+ , ,' ,r,
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The rules (2.1) and (2.2) are used intermittently, since their relative

strengths may differ at different nodes of the search tree. The choice is

based on a coefficient of relative strength.

After branching, the SST and BC algorithms place the newly generated

subproblems on the list, and go to Subproblem Selection. The CT algorithm

instead goes to Lower Bounding.

Lower Bounding. Calculate a lower bound on v(TSPi). This is known to

be the crucial ingredient of any branch and bound method, in that the stronger

the bounds that are derived, the fewer subproblems have to be examined.

The SST algorithm generates the lower bound Li = v(APi) by solving APi

iiwhen TSP i is selected from the list. If L, ? U or the solution to APi is a

tour, the algorithm returns to Subproblem Selection, otherwise it goes to

Branching. After branching it also calculates an estimated lower bound for

the new nodes generated, by adding to v(APi) the penalty associated with the

arc exclusions and inclusions prescribed by the branching rule.

The CT algorithm solves the assignment problem for each node generated

in the Branching step as soon as it was generated, and places on the list

only those successors of TSPi for which the lower bound obtained is below

the current upper bound U. If any of the solutions to the new assignment

problems is a tour of improved value, U is updated. The algorithm then re-

turns to Subproblem Selection.

The BC algorithm uses an elaborate lower bounding procedure that goes

well beyond solving the assignment problem. If the optimal solution x to

the latter defines a tour, U is updated and the algorithm returns to Subprob-

lem Selection. Otherwise, a Lagrangean function is constructed by combining

the original objective function with a family of valid inequalities (mostly

." " Cr. * - C
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facets of the TSP polyhedron) derived from (1.4) and (1.2), with multipliers

chosen in such a way that the optimal solution x to the assignment problem
-. ,.

remains optimal for the new objective function. If the inequalities to be

used are written in the generic form

E Zt x > a t  teT
ieN jeN

for some index set T, then the Lagrangean is

L(w) = in Z (c- E w at )xi4 + Ewat,

xeX ieN j*Ni taT t -ji teT to0

where X is the assignment polytope and w the vector of multipliers. L(w)

provides a valid lower bound for any vector of w > 0. The strongest bound

is obviously given by the Lagrangean dual max(L(w): w > 0), which however

is difficult to solve in the given instance. The BC algorithm replaces the

Lagrangean dual with the restricted Lagrangean problem

.. ;.: w > 0

(RL) max L(w)

u_+v + E w at cij if xj=1

and finds a good approximate solution to (RL). In particular, it uses a

• sequence of polynomial time algorithms (bounding procedures) for identifying

new inequalities that can be added to L(w) with a positive multiplier wt

_ without changing the other components of w.

When the sequence of lower bounding procedures is exhausted, the BC

goes to Upper Bounding.

Upper Bounding. The SST and CT algorithms do not use special upper

bounding procedures, but generate upper bounds as a byproduct of solving AP:

".. whenever the solution is a tour, it provides such a bound.

%* '4 .* *yy.*~ .. ~ .... *' '~ ~ / ~ ~ - ~ ~ ~ ''~. ~ .K
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In the BC algorithm, the Lagrangean function L(w), besides providing

a strong lower bound, also plays the role of defining an "admissible subgraph"

G = (N,A ), whose arc set is

A -- (i,j)eAlui+v + w tat = cij.

The inclusion of each new inequality into L(w) adds at least one new

arc to the set A 0 , and when the lower bounding procedures are exhausted, G0

is strongly connected and without articulation points. The BC algorithm then

uses a specialized implicit enumeration procedure with a cut-off rule in an

attempt to find a tour in G . If a tour H is found, U is updated. Furthermore,* 0

by construction G has the property that if all inequalities with w > 0 are0 t

tight for H, then H is optimal for the current subproblem TSP In this case

the algorithm returns to Subproblem Selection; otherwise it removes from G

all arcs (i,j) whose reduced costs exceed U-L(w) (i.e., fixes at 0 the corre-

sponding variables) and goes to Branching.

The main characteristics of the three algorithms as implemented by

their authors are summarized in Table 1.

3. The Data

Performance data for solving the asymmetric TSP are reported in [10],

[41 and C 11, for FORTRAN implementations of the SST, CT and BC algorithms,

respectively (see also [ 2]), and are reproduced for convenience in Table 2.

Each of the three codes was run on (different) sets of asymnetric TSP's whose

costs were drawn independently from the discrete uniform distribution on

Li: i = 1,2,...,1000). The data consist of the arithmetic average computing

time (in seconds) and arithmetic average number of nodes of the search tree.

This latter number refers to all nodes generated in the case of the CT and

".% .. . . . . . . .
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Table 1. Synopsis of the three TSP algorithms

SST CT BC

Relaxation AP with AP with AP with
TSP objective TSP objective Lagrangian

obj ective

v(APi), obtained v(APi), obtained lower bound

Lower by parametric by Hungarian on v(RL),

bounding simplex method, method (post- polynomial-time
plus penalties optimizing approximation... ~~version) apolain

procedures

'" Branching
Bahn(2.1) (2.1) (2.1) and (2.2)
rules

depth first breadth first depth first upon
Subproblem forward step,
selection breadth first

upon backtracking

no special no special tour-finding

Upper procedure procedure heuris tic.upe applied to
bounding admissible

graph

Variable

fixing no no yes
("reduction")

, 9,
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Table 2. Computational results on randomly generated asymmetric TSP's

Nodes of the search tree Computing time (seconds)

n SST (1 )  CT(2)  BC(2)  SST (3)  CT(4 )  BC(5)

40 26 27 - 2.9 0.9

50 11 - 12 1.7 - 0.2

60 39 24 - 9.3 2.2 -

70 32 - 8.5 - -

75 - - 27 - - 0.3

80 32 42 13.8 6.6 -

90 82 - - 42.0 - -

100 87 56 39 53.0 10.4 0.7
110 24 - - 22.3 - -

120 65 61 - 62.9 16.2

125 - - 43 - - 1.1

130 97 - - 110.1 - -

140 130 57 - 165.2 18.7 -

150 50 - 46 65.3 - 2.0

160 70 73 - 108.5 32.8 -

170 98 - - 169.8 - -

175 - - 58 - - 4.2

180 215 69 - 441.4 28.8 -

200 - 58 63 - 35.7 6.1

220 43 - - 46.7 -

225 - 84 - - 10.4

240 - 63 - - 53.4 -

250 - - 89 - - 13.7275 - - 106 - - 21.7

300 - - 124 - - 38.4

325 - - 142 - - 49.7

(1) Number of nodes that were explored; (2) total number of nodes; (3) UNIVAC 1108;

(4) CDC 6600; (5) CDC 7600

4r

* * ** - . . . . . ... . * 1
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BC algorithms, but only to the nodes selected and explored in the case of

SST. The averages are based on 5, 20, and 10 replications for each problem

size for SST, CT, and BC, respectively. The SST algorithm solved problems

of sizes 40, 50,...,180; CT solved problems of sizes 40, 60,...,240; and

BC solved sizes 50, 75,...,325. The computations were performed on a UNIVAC

1108, CDC 6600, and CDC 7600 for the SST, CT, and BC algorithms, respectively.

We note that the CDC 7600 is approximately three times faster than the CDC

6600 or the UNIVAC 1108 (which are of roughly equal speed).

The natural logarithms of the average solution times for the three

1, jalgorithms are plotted against the natural logarithm of problem size in

Figure 1. A straight line relationship would suggest that solution time is

a polynomial function of problem size. The SST curve is the least smooth of
- -.

the three, undoubtedly because each point is an average of only five trials.

The BC points exhibit the least variance around a smooth function, although

they are averages of only ten trials whereas the CT points are averages of

twenty trials.

We also have solution time data for each of the twenty trials for each

of the eleven problem sizes for the CT algorithm. Table 3 presents some

relevant sumary statistics for these data. The medians are peculiarly in-

sensitive to problem size for 160 < n < 240. Hence the increases in the arith-

metic and geometric means for those problem sizes are due to the right tail

of the distribution, which is corroborated by the 75th percentile solution

times. Overall, the various summary statistics for the distribution of solu-

tion times are highly correlated (see Table 4). The standard deviations of

the solution times increase strongly with problem size; even the standard
,0.

-- : .. . . .. . . '. .. . . . . . . . . . . . . . .... . .-- ~ ~ -... -
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Table 3: Summary statistics for the twenty trials for each of

eleven problem sizes for the CT algorithm

Problem Arithmetic Geometric Median 75th Standard Standard
size mean mean percentile deviation deviation

of t 1  of log(tij)

-n (t-G (t5 W75 ( Slog)

40 0.92 0.79 0.82 1.20 0.48 0.578

60 2.22 1.76 2.07 3.04 1.59 .707

80 6.59 5.37 5.34 8.61 4.57 .656

100 10.41 8.28 7.38 15.22 7.04 .714

120 16.21 10.42 7.57 20.98 19.3 .893

140 18.70 14.20 11.07 27.33 15.6 .729

160 32.82 25.19 28.58 51.17 23.4 .776

180 28.76 19.44 25.85 39.85 25.5 .942

200 35.69 28.30 29.09 57.90 22.9 .739

220 46.71 30.31 23.33 59.10 50.9 .892

240 53.44 32.96 26.04 66.66 63.2 .946

1 4

4

,'
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* * Table 4: Simple correlations between pairs of suimmary statistics

for solution times for the CT algorithm

Log of Log of
Arithmetic arithmetic Geometric geometric Median 75th

mean mean mean mean percentile

(logt 1I 0.886

-G
t1.986 0.905

log[i'1 .875 .998 0.904
9. i

t .5.896 .863 .941 0.872
i

t 7 .984 .901 .999 .899 0.948

i

s o 71.7 68.74.3 .8
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deviations of the natural logarithms of solution times, log increase with, i ,

problem size, with a correlation of 0.78.

4. The Models

To represent computing time as a function of problem size, we inves-

tigated models of the form

(4.1) t f(ni;8)'e iJ,
-> ij

where ni is problem size, tij is the solution time for the j-th trial for

problem size n,, e is a vector of unknown parameters, and c is an error

factor with mean E( ij) equal to zero and variance E(e2 ) equal to a2 , where

- E is the expectation operator. Taking natural logarithms of both sides of

(4.1) yields

(4.2) log t j f log f(ni;e)+e ij

and denoting by N and M the number of problem sizes and trials, respectively,

the problem of minimizing the sum of squared errors (known as the least

squares problem) is

N M 2
(4.3) mn E E (log ti 4log f(ni;)2.

At least for functions f(n ;9) which are linear in 8, least squares estima-

tors are efficient (minimum variance) if the errors are homoscedastic (equal

variance) and uncorrelated [E(cijhk) f% 0 unless i = h and j - k]. The

multiplicative model (4.1) or (4.2) eliminates the worst of the correlation

between the error variance and ni, although even in this model some correla-

tion remains for the Carpaneto-Toth algorithm (see Table 3).
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We shall focus on three approximating functions: polynomial, super-

polynomial (or log-exponential), and exponential, defined by

(4.4) f(n ) = a ni  or log f(ni) = a + Ologni,

(4.5) f(ni) = oi logn or log f(n ) = a + Olog

and

(4.6) f(ni ) = 0eOni or log f(ni) = + Oni
i!

respectively, where a = log c and, as before, log denotes the natural

logarithm.

Since we have only arithmetic average solution times for each problem

size for the SST and BC algorithms, we cannot solve the least squares prob-

lem (4.3). Averaging (4.2) over j produces

(4.7) log -- log

-G -
where t1 is the geometric mean of the tij's (or, equivalently, log t is the

arithmetic mean of the log tt1's), and ei is the arithmetic mean of the Lii's,

-- G
over all J. But since we cannot compute t for the SST and BC algorithms,

we replacet G with the arithmetic mean t for all three algorithms, and actu-0 1

ally solve the least squares problem

N
(4.8) min E [log ti-log f(n ;8)].

8 iffl

Since the correlation between t1 and tG is 0.986 and the correlation between

log(ti) and log(i) is 0.998 for the CT algorithm, this approximation should

not affect our results importantly.
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Discriminating among models is difficult over the range of problem

sizes spanned by our data, especially with the small number of observations

available. Table 5 displays the simple correlations between the predicted

solution times for the sample problem sizes for each pair of models (poly-

nomial, superpolynomial, exponential) for each of the three algorithms (SST,

CT, BC). The smallest correlation is 0.968 between the polynomial and expon-

ential models for the BC algorithm. These high correlations suggest why it

is difficult to estimate which function best describes the relationship be-

tween problem size and solution time for each algorithm.

5. The Results

* We fitted the solution-time data for each of the three algorithms to

each of the three models. The results are as shown in Table 6.

Each of the models is linear in the parameters o and 0 (see (4.4)-(4.6)),

and is of the general form log ti = a+Oxi+gi, where xi = n, for the exponen-

tial model, xi = log ni for the polynomial model, and xi  log2 ni for the

superpolynomial model, and where ni denotes the number of cities as a measure

of problem size, while log denotes the natural logarithm. The symbols a and

stand for the least squares estimates of l and 0, respectively, while s.

and s- denote the .standard errors (or square roots of the estimates of the

variances) of & and O, respectively. The smaller the standard error of an

estimated parameter, the more precise is our estimate of that parameter.

S is the standard error of the regression, defined as

?:;1 N A2 1

(5.1) iN E 61
_p

.:i-li

.4h-'',..-,';.;....;....., ; '- ,-:.-:.-'5 -'.' ~ : s ,'V ,'",':.:.% ''.% :,,Y '";',, ',- :; r,
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Table 5: Simple correlations between least squares

estimated solution times evaluated at sample problem sizes for indicated

Pairs of models for the SST. CT and BC algorithms

Polynomial, Polynomial, Superpolynomial,
superpolynomial exponential exponential

SST 0.999 0.980 0.988

CT 0.998 0.970 0.982

BC 0.998 0.968 0.980

K °"

0 oo

,

."

"0 ~ .* ~ *P* ~ ~ ' q~ . . . ~ * 0 .
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- - Table 6: Least squares estimates of the model

parameters, and associated statistics

- DW

((s) (Signif)

SST

Polynomial -11.39 3.243 0.5132 0.895 2.29
(1.37) (0.296)

Superpolynomial -4.187 0.361 0.5108 0.896 2.26
(0.716) (0.0328)

Exponential -0.0823 0.0331 0.5745 0.868 1.74
(0.406) (0.00343)

CT

Polynomial -8.232 2.256 0.1980 0.977 1.34
(0.531) (0.110)

Superpolynomial -3.307 0.241 0.2598 0.960 0.93
(0.373) (0.0155) (0.05)

Exponential -0.789 0.0140 0.3462 0.929 1.52
-- , (0.369) (0.00215)

BC
Polynomial -14.51 3.114 0.3607 0.962 0.83

(0.953) (0.186) (0.05)

Superpolynomial -7.046 0.320 0.2600 0.980 1.05
(0.367) (0.0136)

Exponential -2.470 0.0205 0.1985 0.989 0.96
(0.137) (0.00066) (0.05)

Notes:

C- , = least squares estimates of c,0

s*,s- - standard error of &,

S = standard error of regression

= squared (adjusted) coefficient of multiple correlation

DW = Durbin-Watson statistic

Signif - level of significance
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where p is the dimensionality of 8 (here p = 2, since e = (c,), and

9 = log t if(ni;G). S is a measure of the average distance of the data

points from the regression line.

-2R is the (adjusted) squared multiple correlation coefficient (also

called coefficient of (multiple) determination), defined as

:-.,-..-2 (S'2/g2)
(5.2) = l- 2 )

where

-2 N -2

"''. 2

and where yI denotes log t, while y is the arithmetic mean of the Y's. R2

is the fraction of the variance of the log ti's explained by the regression.

The closer to 1 is the coefficient of determination, and the closer to 0 is the

standard error of the regression for a certain model, the better that model

fits the data.

* DW stands for the Durbin-Watson statistic, defined as

4-'... (5.3) DW =

i* i=l

It is a measure of the association of "adjacent" residuals. If the residuals

are uncorrelated, DW = 2; if they are perfectly positively correlated, DW = 0;

and if they are perfectly negatively correlated, DW - 4. In our context, a

Durbin-Watson statistic significantly less than 2 for a certain model in-

dicates that the model systematically overestimates and underestimates ranges

of the curve described by the data, whereas a DW statistic significantly

greater than 2 indicates frequent alternations of over- and under-estimates.

For further details on the statistical concepts used here and in the

rest of the paper, the reader is referred to [8 ] and [111.
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Based on the standard error of the regression and the coefficient of

determination, none of the three models fits the data of the SST algorithm

very well, although the polynomial and superpolynomial models fit them slightly

better than the exponential one. The performance of the CT algorithm is best

described by the polynomial function, with the superpolynomial a close second,

and the exponential third. The exponential function fits best the BC data,

with the superpolynomial a close second and the polynomial third.

Although the exponential function fits the BC data better than the

* other two functions, its DW statistic is nevertheless significant at the 5%

level, i.e., even this "best" function systematically fails to capture the

- curvature of the "true" function behind the data (the 5% significance level

means that the chances of getting a value as different from 2 as 0.96 if

in fact the errors are uncorrelated, are less than one in 20). The DW sta-

tistics for the other "best" models do not significantly differ from 2.

More significant than the differences in model rankings for the three

.-c algorithms is the relative closeness of the fit for all three models, for

each of the algorithms. Although the CT algorithm is best described by the

polynomial model and the BC algorithm by the exponential model, note that

-- both the exponential model for the CT algorithm and the polynomial model
0

for the BC algorithm fit the data considerably better than any of the models

-.- for the SST algorithm.

Since we are particularly interested in the asymptotic behavior of
0

these algorithms, it is important that there not be any systematic discrep-

ancies between the actual data points and their estimated values for the

larger problem sizes. For example, the model yj = o + Ox, + ei will fit data

2
generated by y1  x very well over broad ranges of x ; but the model will tend

4 ... .
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"-'.- to underestimate Yj for small and large values of xi and overestimate Yj for

intermediate values of x One clue in this case would be a DW statistic

near zero. However, one cannot count on the DW statistic in a more compli-

.- cated situation.

There is a simple procedure for testing whether the data for small and

large problem sizes can be described adequately by the same model. Partition

the data into two subsets: I, = 1,2,...,[N]3, 12= +1- , N + 2 -

N N N
... , N), where [-] is the greatest integer in 1. Estimate the model for""2 2 etesmo qae

each subset of the data by least squares and let Sk be the sum of squared

residuals (denoted for the model associated with I:

-' 42 (A)2.
(5.4) s= .

k Ik

Let I= I U 12 S = and defi iisi. (Note that for N odd the set I excludes

the middle observation.) Then the statistic

2 2 2 N
S2 _-S+S 2- - 4

(5.5) u 2 2

S1 + 2

has the F (Fisher's) distribution with 2 degrees of freedom in the numerator

and 2[2] - 4 degrees of freedom in the denominator. The larger this statistic

is, the less likely it is that the data for II and 12 can be described by the

same model.

The legitimacy of this test depends, inter alia, on the homoscedasticity

of the errors ei. If we hypothesize that var(ei) 2 k, then the

statistic

2 2
(5.6) = /S2

a'..

a';:. ;¢ e . r$ Nee y ., . ,,,,,",'".: ,-',.,e..-,e" .
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can be used to test the null hypothesis H : a 2 a2agisthaleniv

2 2
hypothesis Ha: a A a2. The statistic w has the F distribution with [ - 2

a 1 22
degrees of freedom in the numerator and denominator. The null hypothesis is

rejected if w is sufficiently different from 1 (the symetry occurs because

if H0 is false, either a1 > 02 or 2 > a2 These tests were performed with

the results shown in Table 7.

Table 7. Tests for homoscedasticity (w) and model stability (u)

Algorithm S T CT BC

Model W u W u W u

Polynomial 1.036 0.145 0.910 6.570 8.277 14.436
(0.05) (0.1) (0.005)

Superpolynomial 0.959 0.530 1.067 12.647 6.499 7.674
(0.01) (0.1) (0.025)

Exponential 0.815 3.816 4.139 25.611 1.926 13.914

(0.1) (0.005) (0.005)

* The numbers in parenthesis represent significance levels.

Only the polynomial and superpolynomial models for BC fail the test for

homoscedasticity, which they fail only at the 10 percent significance level.

To perform the stability tests for these two models we multiplied the first

six observations by S2/S1 , thereby insuring the equality of the residual

variances for the two regressions based on I and I2.

Only the polynomial and superpolynomial models for SST, which are the

better-fitting models for that algorithm, pass the model stability test.

Stability of all the models for BC and CT is rejected. The problem is either

that the asymptotic behavior of the BC and CT algorithms is not well described

by any of the models or that low-order effects confound our results because

the samples do not include enough sufficiently large problem sizes.

IL ,'e
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V.
Because the models generally fail the stability tests, the results for

larger problem sizes may be better predictors of asymptotic behavior than are

the results for all observations. Tables 8, 9, and 10 present the estimates

for SST, CT, and BC, respectively, for the three models based on data for the

smaller half and larger half of the problem sizes. These Tables dramatize

why the models for BC and CT do not survive the stability tests. While the

exponential model remains best for each half of the BC data, the exponent

declines about thirty percent, from 0.0245 to 0.0170 (and the constant term

increases from -2.913 to -1.568) from the first to the second half. These

changes are far greater than could be expected from sampling error (as pre-

dicted by the standard errors of & and ), which is why the model stability

test fails. The two functions predict equal solution times for problems

roughly of size 179, which lies between the subsets of smaller and larger

problem sizes on which the estimates are based. Overall, there is little

difference in the within-sample predictive ability of the three models

(as judged by S).

The polynomial model remains best for smaller problem sizes for the

Carpaneto-Toth algorithm, with the superpolynomial model a close contender.

For the larger problem sizes, the exponential model is best, although there

is little to choose among the three models. For all three models, the coef-

ficient of the problem size explanatory variable decreases from the first

(smaller problems) to the second (larger problems) regression. That is, the

logarithms of solution times for smaller problems are more sensitive to problem

size than are the logs of solution times for larger problems.

For the SST algorithm, the exponential model, which fits the entire data

set worst, fits the two subsets best, although the differences among models

are not great, especially for the larger problem sizes. Again, the sensitivity

of log solution times to problem size declines for all three models, dramatically

for the exponential.4.h
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Table 8. Least squares estimates for the SST algorithm.

T DW

(e.) (So) (Signif)

40 < n < 100

Polynomial -12.71 3.578 0.5276 0.827 2.72
(2.77) (0.657)

Superpolynomial -5.377 0.434 0.5047 0.841 2.86
(1.358) (0.0757)

Exponential -1.553 0.0554 0.4550 0.871 3.22
(0.626) (0.00860)

120 < n < 180

Polynomial -11.36 3.243 0.5183 0.400 1.63
(7.26) (1.451)

Superpolynomial -3.312 0.327 0.5155 0.406 1.64
(3.625) (0.145)

Exponential 1.493 0.0225 0.5041 0.432 1.68
(1.442) (0.00953)

Notes: see Table 6.

"0
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Table 9. Least squares estimates for the CT algorithm.

-2 DW

(S-) (S-) (signif)

40 < n < 120

Polynomial -10.07 2.693 0.1325 0.987 3.10
(0.661) (0.153)

Superpolynomial -4.408 0.318 0.1409 0.986 2.59
(0.365) (0.0192)

Exponential -1.370 0.0364 0.2574 0.952 1.55
(0.345) (0.00407)

160 < n < 240

Polynomial -3.791 1.407 0.1389 0.704 1.93
(2.293) (0.434)

. Superpolynomial -0.0992 0.134 0.1365 0.715 1.95
(1.131) (0.0404)

Exponential 2.189 0.00730 0.1265 0.755 2.03
(0.404) (0.00200)

Wnbo.tea: see Table 6.

"S
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4, Table 10. Least squares estimates for the BC alRorithm. 14

A A -2
clS R DW

(s) (s ) (Sigrif)

50 < n < 175

Polynomial -11.33 2.407 0.2879 0.937 1.72
(1.29) (0.277)

Superpolynomial -5.954 0.267 0.2415 0.956 1.89
(0.563) (0.0255)

Exponential -2.913 0.0245 0.1203 0.989 3.15

(0.138) (0.00115)

200 < n < 325

Polynomial -21.43 4.379 0.1001 0.984 2.10
(1.37) (0.247)

Superpolynomial -9.319 0.395 0.0947 0.986 2.30
(0.652) (0.0211)

Exponential -1.568 0.0170 0.0867 0.988 2.95
(0.221) (0.00083)

Notes: see Table 6.

'..

,: .I
°
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In sumary, these statistics do not offer much basis for deciding which

of the three models describes best the performance of the three TSP algorithms.

They nevertheless convey the important information that the best fitting poly-

nomial functions have exponent around 3 (for the polynomial model, 2.2 < <

3.2), while the best fitting exponential functions have base around 1.02 (for

0.014 0.033
the exponential model, the base b satisfies e < b < e . All three

approximating functions for all three algorithms are shown in Table 11.

Table 11. Best Approximatinr Functions

Algorithm SST CT BC

unction typ 40 < n < 180 40 < n < 240 50 < n< 325
Function typ I____________

Polynomial .13x10 5 Xn 3.243 0.27x10 3 Xn2256 0.5X10 6 xn 3.114

Super- 0.15x10" xn 36logn 0.37X10 " xn 0 241logn 0.87x10 3xn ° 320ogn

polynomial

Epnni X0.0331n . 0 45 O14n. -1 0.0205n,- Exponential 0.92e 0.45 O. 85 xl0 " xe0 025

J

,'I.

4..
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